GraphCDR: a graph neural network method with contrastive learning for cancer drug response prediction

Author:

Liu Xuan1,Song Congzhi1,Huang Feng1,Fu Haitao1,Xiao Wenjie2,Zhang Wen1

Affiliation:

1. College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China

2. Information School, University of Washington, Washington, 98105, USA

Abstract

Abstract Predicting the response of a cancer cell line to a therapeutic drug is an important topic in modern oncology that can help personalized treatment for cancers. Although numerous machine learning methods have been developed for cancer drug response (CDR) prediction, integrating diverse information about cancer cell lines, drugs and their known responses still remains a great challenge. In this paper, we propose a graph neural network method with contrastive learning for CDR prediction. GraphCDR constructs a graph neural network based on multi-omics profiles of cancer cell lines, the chemical structure of drugs and known cancer cell line-drug responses for CDR prediction, while a contrastive learning task is presented as a regularizer within a multi-task learning paradigm to enhance the generalization ability. In the computational experiments, GraphCDR outperforms state-of-the-art methods under different experimental configurations, and the ablation study reveals the key components of GraphCDR: biological features, known cancer cell line-drug responses and contrastive learning are important for the high-accuracy CDR prediction. The experimental analyses imply the predictive power of GraphCDR and its potential value in guiding anti-cancer drug selection.

Funder

National Natural Science Foundation of China

Huazhong Agricultural University Scientific & Technological Self-innovation Foundation

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3