Deep learning in retrosynthesis planning: datasets, models and tools

Author:

Dong Jingxin1,Zhao Mingyi2,Liu Yuansheng1,Su Yansen3,Zeng Xiangxiang1

Affiliation:

1. College of Information Science and Engineering, Hunan University, 2 Lushan S Rd, Yuelu District, 410086, Hunan, China

2. Department of Pediatrics, Third Xiangya Hospital, Central South University, 400013, Hunan, China

3. Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 230601, Hefei, China

Abstract

Abstract In recent years, synthesizing drugs powered by artificial intelligence has brought great convenience to society. Since retrosynthetic analysis occupies an essential position in synthetic chemistry, it has received broad attention from researchers. In this review, we comprehensively summarize the development process of retrosynthesis in the context of deep learning. This review covers all aspects of retrosynthesis, including datasets, models and tools. Specifically, we report representative models from academia, in addition to a detailed description of the available and stable platforms in the industry. We also discuss the disadvantages of the existing models and provide potential future trends, so that more abecedarians will quickly understand and participate in the family of retrosynthesis planning.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3