SMMPPI: a machine learning-based approach for prediction of modulators of protein–protein interactions and its application for identification of novel inhibitors for RBD:hACE2 interactions in SARS-CoV-2

Author:

Gupta Priya1ORCID,Mohanty Debasisa2ORCID

Affiliation:

1. NII, New Delhi 110067, India

2. Bioinformatics & Computational Biology research group at NII, New Delhi 110067, India

Abstract

Abstract Small molecule modulators of protein–protein interactions (PPIs) are being pursued as novel anticancer, antiviral and antimicrobial drug candidates. We have utilized a large data set of experimentally validated PPI modulators and developed machine learning classifiers for prediction of new small molecule modulators of PPI. Our analysis reveals that using random forest (RF) classifier, general PPI Modulators independent of PPI family can be predicted with ROC-AUC higher than 0.9, when training and test sets are generated by random split. The performance of the classifier on data sets very different from those used in training has also been estimated by using different state of the art protocols for removing various types of bias in division of data into training and test sets. The family-specific PPIM predictors developed in this work for 11 clinically important PPI families also have prediction accuracies of above 90% in majority of the cases. All these ML-based predictors have been implemented in a freely available software named SMMPPI for prediction of small molecule modulators for clinically relevant PPIs like RBD:hACE2, Bromodomain_Histone, BCL2-Like_BAX/BAK, LEDGF_IN, LFA_ICAM, MDM2-Like_P53, RAS_SOS1, XIAP_Smac, WDR5_MLL1, KEAP1_NRF2 and CD4_gp120. We have identified novel chemical scaffolds as inhibitors for RBD_hACE PPI involved in host cell entry of SARS-CoV-2. Docking studies for some of the compounds reveal that they can inhibit RBD_hACE2 interaction by high affinity binding to interaction hotspots on RBD. Some of these new scaffolds have also been found in SARS-CoV-2 viral growth inhibitors reported recently; however, it is not known if these molecules inhibit the entry phase.

Funder

Department of Biotechnology, Government of India

National Institute of Immunology

Department of Biotechnology

COE

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3