Mendelian randomization under the omnigenic architecture

Author:

Wang Lu123ORCID,Gao Boran23,Fan Yue234,Xue Fuzhong1,Zhou Xiang23

Affiliation:

1. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China

2. Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA

3. Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA

4. School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi’an, Shaanxi 710061, China

Abstract

Abstract Mendelian randomization (MR) is a common analytic tool for exploring the causal relationship among complex traits. Existing MR methods require selecting a small set of single nucleotide polymorphisms (SNPs) to serve as instrument variables. However, selecting a small set of SNPs may not be ideal, as most complex traits have a polygenic or omnigenic architecture and are each influenced by thousands of SNPs. Here, motivated by the recent omnigenic hypothesis, we present an MR method that uses all genome-wide SNPs for causal inference. Our method uses summary statistics from genome-wide association studies as input, accommodates the commonly encountered horizontal pleiotropy effects and relies on a composite likelihood framework for scalable computation. We refer to our method as the omnigenic Mendelian randomization, or OMR. We examine the power and robustness of OMR through extensive simulations including those under various modeling misspecifications. We apply OMR to several real data applications, where we identify multiple complex traits that potentially causally influence coronary artery disease (CAD) and asthma. The identified new associations reveal important roles of blood lipids, blood pressure and immunity underlying CAD as well as important roles of immunity and obesity underlying asthma.

Funder

University of Michigan

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3