Affiliation:
1. School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
Abstract
Abstract
Drug combination is a sensible strategy for disease treatment because it improves the treatment efficacy and reduces concomitant side effects. Due to the large number of possible combinations among candidate compounds, exhaustive screening is prohibitive. Currently, a large number of studies have focused on predicting potential drug combinations. However, these methods are not entirely satisfactory in terms of performance and scalability. In this paper, we proposed a Network Embedding frameWork in MultIplex Network (NEWMIN) to predict synthetic drug combinations. Based on a multiplex drug similarity network, we offered alternative methods to integrate useful information from different aspects and to decide the quantitative importance of each network. For drug combination prediction, we found seven novel drug combinations that have been validated by external sources among the top-ranked predictions of our model. To verify the feasibility of NEWMIN, we compared NEWMIN with other five methods, for which it showed better performance than other methods in terms of the area under the precision-recall curve and receiver operating characteristic curve.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献