A machine learning framework to predict antibiotic resistance traits and yet unknown genes underlying resistance to specific antibiotics in bacterial strains

Author:

Sunuwar Janak1,Azad Rajeev K1

Affiliation:

1. Department of Biological Sciences and BioDiscovery Institute; Department of Mathematics, University of North Texas, Denton, Texas 76203, USA

Abstract

Abstract Recently, the frequency of observing bacterial strains without known genetic components underlying phenotypic resistance to antibiotics has increased. There are several strains of bacteria lacking known resistance genes; however, they demonstrate resistance phenotype to drugs of that family. Although such strains are fewer compared to the overall population, they pose grave emerging threats to an already heavily challenged area of antimicrobial resistance (AMR), where death tolls have reached ~700 000 per year and a grim projection of ~10 million deaths per year by 2050 looms. Considering the fact that development of novel antibiotics is not keeping pace with the emergence and dissemination of resistance, there is a pressing need to decipher yet unknown genetic mechanisms of resistance, which will enable developing strategies for the best use of available interventions and show the way for the development of new drugs. In this study, we present a machine learning framework to predict novel AMR factors that are potentially responsible for resistance to specific antimicrobial drugs. The machine learning framework utilizes whole-genome sequencing AMR genetic data and antimicrobial susceptibility testing phenotypic data to predict resistance phenotypes and rank AMR genes by their importance in discriminating the resistance from the susceptible phenotypes. In summary, we present here a bioinformatics framework for training machine learning models, evaluating their performances, selecting the best performing model(s) and finally predicting the most important AMR loci for the resistance involved.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3