A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information

Author:

Le Nguyen Quoc Khanh1,Ho Quang-Thai2,Nguyen Trinh-Trung-Duong3,Ou Yu-Yen3

Affiliation:

1. Professional Master Program in Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan

2. College of Information and Communication Technology, Can Tho University, Vietnam

3. Department of Computer Science and Engineering, Yuan Ze University, Taiwan

Abstract

Abstract Recently, language representation models have drawn a lot of attention in the natural language processing field due to their remarkable results. Among them, bidirectional encoder representations from transformers (BERT) has proven to be a simple, yet powerful language model that achieved novel state-of-the-art performance. BERT adopted the concept of contextualized word embedding to capture the semantics and context of the words in which they appeared. In this study, we present a novel technique by incorporating BERT-based multilingual model in bioinformatics to represent the information of DNA sequences. We treated DNA sequences as natural sentences and then used BERT models to transform them into fixed-length numerical matrices. As a case study, we applied our method to DNA enhancer prediction, which is a well-known and challenging problem in this field. We then observed that our BERT-based features improved more than 5–10% in terms of sensitivity, specificity, accuracy and Matthews correlation coefficient compared to the current state-of-the-art features in bioinformatics. Moreover, advanced experiments show that deep learning (as represented by 2D convolutional neural networks; CNN) holds potential in learning BERT features better than other traditional machine learning techniques. In conclusion, we suggest that BERT and 2D CNNs could open a new avenue in biological modeling using sequence information.

Funder

Newly Hired Faculty, Taipei Medical University

Higher Education Sprout Project, Ministry of Education, Taiwan

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3