Radium 223-Mediated Zonal Cytotoxicity of Prostate Cancer in Bone

Author:

Dondossola Eleonora,Casarin Stefano,Paindelli Claudia,De-Juan-Pardo Elena M,Hutmacher Dietmar W,Logothetis Christopher J,Friedl Peter

Abstract

Abstract Background Bone-targeting radiotherapy with Radium-223 (Rad-223), a radioisotope emitting genotoxic alpha-radiation with limited tissue penetrance (∼100 µm), prolongs the survival of patients with metastatic prostate cancer (PCa). Confoundingly, the clinical response to Rad-223 is often followed by detrimental relapse and progression, and whether Rad-223 causes tumor-cell directed cytotoxicity in vivo remains unclear. We hypothesized that limited radiation penetrance in situ defines outcome. Methods We tested Rad-223 overall response by PC3 and C4–2B human PCa cell lines in mouse bones (n = 5–18 tibiae per group). Rad-223 efficacy at subcellular resolution was determined by intravital microscopy analysis of dual-color fluorescent PC3 cells (n = 3–4 mice per group) in tissue-engineered bone constructs. In vivo data were fed into an in silico model to predict Rad-223 effectiveness in lesions of different sizes (1–27, 306 initial cells; n = 10–100 simulations) and the predictions validated in vivo by treating PCa tumors of varying sizes in bones (n = 10–14 tibiae per group). Statistical tests were performed by two-sided Student t test or by one-way ANOVA followed by Tukey’s post-hoc test. Results Rad-223 (385 kBq/kg) delayed the growth (means [SD]; comparison with control-treated mice) of PC3 (6.7 × 105[4.2 × 105] vs 2.8 × 106 [2.2 × 106], P = .01) and C4–2B tumors in bone (7.7 × 105 [4.0 × 105] vs 3.5 × 106 [1.3 × 106], P < .001). Cancer cell lethality in response to Rad-223 (385 kBq/kg) was profound but zonally confined along the bone interface compared with the more distant tumor core, which remained unperturbed (day 4; 13.1 [2.3%] apoptotic cells, 0–100 µm distance from bone vs 3.6 [0.2%], >300 µm distance; P = .01).In silico simulations predicted greater efficacy of Rad-223 on single-cell lesions (eradication rate: 88.0%) and minimal effects on larger tumors (no eradication, 16.2% growth reduction in tumors of 27 306 cells), as further confirmed in vivo for PC3 and C4–2B tumors. Conclusions Micro-tumors showed severe growth delay or eradication in response to Rad-223, whereas macro-tumors persisted and expanded. The relative inefficacy in controlling large tumors points to application of Rad-223 in secondary prevention of early bone-metastatic disease and regimens co-targeting the tumor core.

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

Reference22 articles.

1. Cancer to bone: a fatal attraction;Weilbaecher;Nat Rev Cancer,2011

2. Radiation for bone metastases;Bourgeois;Curr Opin Support Palliat Care,2011

3. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities?;Bruland;Clin Cancer Res,2006

4. Alpha emitter radium-223 and survival in metastatic prostate cancer;Parker;N Engl J Med,2013

5. Significant antitumor effect from bone-seeking, alpha-particle-emitting (223)Ra demonstrated in an experimental skeletal metastases model;Henriksen;Cancer Res,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3