Chronic SIRT1 supplementation in diabetic mice improves endothelial function by suppressing oxidative stress

Author:

Yang Kangmin1ORCID,Velagapudi Srividya1ORCID,Akhmedov Alexander1ORCID,Kraler Simon1ORCID,Lapikova-Bryhinska Tetiana1,Schmiady Martin O2,Wu Xiaoping3,Geng Leiluo3,Camici Giovanni G14,Xu Aimin3ORCID,Lüscher Thomas F1

Affiliation:

1. Center for Molecular Cardiology, University of Zürich , Wagistrasse 12, 8952 Schlieren , Switzerland

2. Department of Cardiac Surgery, University Heart Center, University Hospital Zurich , Rämistrasse 100, 8091 Zurich , Switzerland

3. State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong , Sassoon Road 21, Pok Fu Lam, 000000 Hong Kong , China

4. Department of Research and Education, University Hospital Zurich , Rämistrasse 100, 8091 Zurich , Switzerland

Abstract

Abstract Aims Enhancing SIRT1 activity exerts beneficial cardiovascular effects. In diabetes, plasma SIRT1 levels are reduced. We aimed to investigate the therapeutic potential of chronic recombinant murine SIRT1 (rmSIRT1) supplementation to alleviate endothelial and vascular dysfunction in diabetic mice (db/db). Methods and results Left internal mammary arteries obtained from patients undergoing coronary artery bypass grafting with or without a diagnosis of diabetes were assayed for SIRT1 protein levels. Twelve-week-old male db/db mice and db/+ controls were treated with vehicle or rmSIRT1 intraperitoneally for 4 weeks, after which carotid artery pulse wave velocity (PWV) and energy expenditure/activity were assessed by ultrasound and metabolic cages, respectively. Aorta, carotid, and mesenteric arteries were isolated to determine endothelial and vascular function using the myograph system. Arteries obtained from diabetic patients had significantly lower levels of SIRT1 relative to non-diabetics. In line, aortic SIRT1 levels were reduced in db/db mice compared to db/+ mice, while rmSIRT1 supplementation restored SIRT1 levels. Mice receiving rmSIRT1 supplementation displayed increased physical activity and improved vascular compliance as reflected by reduced PWV and attenuated collagen deposition. Aorta of rmSIRT1-treated mice exhibited increased endothelial nitric oxide (eNOS) activity, while endothelium-dependent contractions of their carotid arteries were significantly decreased, with mesenteric resistance arteries showing preserved hyperpolarization. Ex vivo incubation with reactive oxygen species (ROS) scavenger Tiron and NADPH oxidase inhibitor apocynin revealed that rmSIRT1 leads to preserved vascular function by suppressing NADPH oxidase (NOX)-related ROS synthesis. Chronic rmSIRT1 treatment resulted in reduced expression of both NOX1 and NOX4, in line with a reduction in aortic protein carbonylation and plasma nitrotyrosine levels. Conclusions In diabetic conditions, arterial SIRT1 levels are significantly reduced. Chronic rmSIRT1 supplementation improves endothelial function and vascular compliance by enhancing eNOS activity and suppressing NOX-related oxidative stress. Thus, SIRT1 supplementation may represent novel therapeutic strategy to prevent diabetic vascular disease.

Funder

Sino-Swiss Science and Technology Cooperation

National Natural Science Foundation of China

Swiss National Research Science Foundation

Foundation for Cardiovascular Research—Zurich Heart House

Swiss Heart Foundation

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3