A machine learning based approach to identify carotid subclinical atherosclerosis endotypes

Author:

Chen Qiao Sen1ORCID,Bergman Otto1,Ziegler Louise2,Baldassarre Damiano34ORCID,Veglia Fabrizio5,Tremoli Elena5,Strawbridge Rona J167,Gallo Antonio8,Pirro Matteo9,Smit Andries J10,Kurl Sudhir11,Savonen Kai1213,Lind Lars14ORCID,Eriksson Per1,Gigante Bruna115ORCID,Sirtori C R,Castelnuovo S,Amato M,Frigerio B,Ravani A,Sansaro D,Tedesco C,Bonomi A,Laguzzi F,Leander Karin,Silveira Angela,Cooper J,Acharya J,Huttunen K,Rauramaa E,Pekkarinen H,Penttila I M,Törrönen J,van Gessel A I,van Roon A M,Teune G C,Kuipers W D,Bruin M,Nicolai A,Haarsma-Jorritsma P,Mulder D J,Bilo H J G,Smeets G H,Beaudeux J L,Kahn J F,Carreau V,Kontush A,Karppi J,Nurmi T,Nyyssönen K,Salonen R,Tuomainen T P,Tuomainen J,Kauhanen J,Vaudo G,Alaeddin A,Siepi D,Lupattelli G,Schillaci G,

Affiliation:

1. Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet , Solnavägen 30, 171 64 Stockholm , Sweden

2. Division of Medicine and Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet , Entrevägen 2, 182 88 Stockholm , Sweden

3. Department of Medical Biotechnology and Translational Medicine, Università di Milano , Via Vanvitelli 32, 20133 Milan , Italy

4. Centro Cardiologico Monzino, IRCCS , Via Carlo Parea 4, 20138 Milan , Italy

5. Maria Cecilia Hospital , GVM Care & Research, Via Corriera 1, 48033 Cotignola (RA) , Italy

6. Institute of Health and Wellbeing, University of Glasgow , Clarice Pears Building, 90 Byres Road, Glasgow G12 8TB , UK

7. Health Data Research , Clarice Pears Building, 90 Byres Road, Glasgow G12 8TB , UK

8. Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Sorbonne Université, INSERM UMR1166, APHP, Hôpital Pitié-Salpètriêre , 47 Boulevard de l´Hopital, 75013 Paris , France

9. Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia , Piazzale Menghini 1, 06129 Perugia , Italy

10. Department of Medicine, University Medical Center Groningen, Groningen & Isala Clinics Zwolle , Dokter Spanjaardweg 29B, 8025 BT Groningen , the Netherlands

11. Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Kuopio Campus, Yliopistonranta 1 C, Canthia Building, B Wing, FI-70211 Kuopio , Finland

12. Kuopio Research Institute of Exercise Medicine , Haapaniementie 16, FI-70100 Kuopio , Finland

13. Department of Clinical Physiology and Nuclear Medicine, Science Service Center, Kuopio University Hospital , Yliopsistonranta 1F, FI-70211 Kuopio , Finland

14. Department of Medical Sciences, Uppsala University, Uppsala Science Park , Dag Hammarskjöldsv 10B, 752 37 Uppsala , Sweden

15. Department of Cardiology, Danderyd University Hospital , Entrevägen 2, 182 88 Stockholm , Sweden

Abstract

Abstract Aims To define endotypes of carotid subclinical atherosclerosis. Methods and results We integrated demographic, clinical, and molecular data (n = 124) with ultrasonographic carotid measurements from study participants in the IMPROVE cohort (n = 3340). We applied a neural network algorithm and hierarchical clustering to identify carotid atherosclerosis endotypes. A measure of carotid subclinical atherosclerosis, the c-IMTmean-max, was used to extract atherosclerosis-related features and SHapley Additive exPlanations (SHAP) to reveal endotypes. The association of endotypes with carotid ultrasonographic measurements at baseline, after 30 months, and with the 3-year atherosclerotic cardiovascular disease (ASCVD) risk was estimated by linear (β, SE) and Cox [hazard ratio (HR), 95% confidence interval (CI)] regression models. Crude estimates were adjusted by common cardiovascular risk factors, and baseline ultrasonographic measures. Improvement in ASCVD risk prediction was evaluated by C-statistic and by net reclassification improvement with reference to SCORE2, c-IMTmean-max, and presence of carotid plaques. An ensemble stacking model was used to predict endotypes in an independent validation cohort, the PIVUS (n = 1061). We identified four endotypes able to differentiate carotid atherosclerosis risk profiles from mild (endotype 1) to severe (endotype 4). SHAP identified endotype-shared variables (age, biological sex, and systolic blood pressure) and endotype-specific biomarkers. In the IMPROVE, as compared to endotype 1, endotype 4 associated with the thickest c-IMT at baseline (β, SE) 0.36 (0.014), the highest number of plaques 1.65 (0.075), the fastest c-IMT progression 0.06 (0.013), and the highest ASCVD risk (HR, 95% CI) (1.95, 1.18–3.23). Baseline and progression measures of carotid subclinical atherosclerosis and ASCVD risk were associated with the predicted endotypes in the PIVUS. Endotypes consistently improved measures of ASCVD risk discrimination and reclassification in both study populations. Conclusions We report four replicable subclinical carotid atherosclerosis—endotypes associated with progression of atherosclerosis and ASCVD risk in two independent populations. Our approach based on endotypes can be applied for precision medicine in ASCVD prevention.

Funder

Stiftelsen Sigurd & Elsa Goljes minne

Stiftelsen Professor Nanna Svartz fond

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3