Assessing RNA integrity by digital RT-PCR: Influence of extraction, storage, and matrices

Author:

Wurtzer Sebastien1ORCID,Duvivier Mathilde1,Accrombessi Heberte1,Levert Morgane12,Richard Elise1,Moulin Laurent13

Affiliation:

1. Research & Development Department, Eau de Paris. DRDQE , FR-9400, France

2. Paris Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine , F-75005, Paris, France

3. Obepine SIG , Paris, FR-75000, France

Abstract

Abstract The development of high-throughput sequencing has greatly improved our knowledge of microbial diversity in aquatic environments and its evolution in highly diverse ecosystems. Relevant microbial diversity description based on high-throughput sequencing relies on the good quality of the nucleic acid recovered. Indeed, long genetic fragments are more informative for identifying mutation combinations that characterize variants or species in complex samples. This study describes a new analytical method based on digital Polymerase Chain Reaction (PCR) partitioning technology for assessing the fragmentation of nucleic acid and more specifically viral RNA. This method allows us to overcome limits associated with hydrolysis probe-based assay by focusing on the distance between different amplicons, and not, as usual, on the size of amplicons. RNA integrity can thus be determined as a new fragmentation index, the so-called Fragment size 50. The application of this method has provided information on issues that are inherent in environmental analyses, such as the storage impact of raw samples or extracted RNA, extraction methods, and the nature of the sample on the integrity of viral RNA. Finally, the estimation of fragment size by digital PCR (dPCR) showed a very strong similarity with the fragment size sequenced using Oxford Nanopore Technology. In addition to enabling objective improvements in analytical methods, this approach could become a systematic quality control prior to any long-read sequencing, avoiding insufficiently productive sequencing runs or biases in the representativeness of sequenced fragments.

Funder

Eau de Paris

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3