Exogenous spike-in mouse RNAs for accurate differential gene expression analysis in barley using RT-qPCR

Author:

Vinje Marcus A1ORCID,Friedman David A1

Affiliation:

1. USDA, Agricultural Research Service, Cereal Crops Research Unit , Madison, WI 53726, United States

Abstract

Abstract Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) followed by the 2−ΔΔCt method is the most common way to measure transcript levels for relative gene expression assays. The quality of an RT-qPCR assay is dependent upon the identification and validation of reference genes to normalize gene expression data. The so-called housekeeping genes are commonly used as internal reference genes because they are assumed to be ubiquitously expressed at stable levels. Commonly, researchers do not validate their reference genes but rely on historical reference genes or previously validated genes from an unrelated experiment. Using previously validated reference genes to assess gene expression changes occurring during malting resulted in extensive variability. Therefore, a new method was tested and validated to circumvent the use of internal reference genes. Total mouse RNA was chosen as the external reference RNA and a suite of primer sets to putatively stable mouse genes was created to identify stably expressed genes for use as an external reference gene. cDNA was created by co-amplifying total mouse RNA, as an RNA spike-in, and barley RNA. When using the external reference genes to normalize malting gene expression data, standard deviations were significantly reduced and significant differences in transcript abundance were observed, whereas when using the internal reference genes, standard deviations were larger with no significant differences seen. Furthermore, external reference genes were more accurate at assessing expression levels in malting and developing grains, whereas the internal reference genes overestimated abundance in developing grains and underestimated abundance in malting grains.

Funder

U.S. Department of Agriculture, Agriculture Research Service

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3