Exposing and exploiting host–parasite arms race clues in SARS-CoV-2: a principally new method for improved T cell immunogenicity prediction

Author:

Flegr Jaroslav1ORCID,Králová Lesná Ivana23,Zahradník Daniel14

Affiliation:

1. Laboratory of Evolutionary Biology, Department of Philosophy and History of Science, Faculty of Science, Charles University , Prague, Czech Republic

2. Experimental Medicine Centre, Institute for Clinical and Experimental Medicine , Prague 140 21, Czech Republic

3. Department of Anesthesiology and Intensive Care of the 1st Faculty of Medicine, Charles University , Prague 169 02, Czech Republic

4. Department of Biological Risks, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening , Průhonice, Czech Republic

Abstract

Abstract Computational prediction of T cell epitopes is a crucial component in the development of novel vaccines. T cells in a healthy vertebrate host can recognize as non-self only those peptides that are present in the parasite’s proteins but absent in the host’s proteins. This principle enables us to determine the current and past host specificity of a parasite and to predict peptides capable of eliciting a T cell response. Building upon the detailed mapping of T cell clone specificity for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antigens, we employed Monte Carlo tests to determine that empirically confirmed T cell-stimulating peptides have a significantly increased proportion of pentapeptides, hexapeptides and heptapeptides not found in the human proteome (P < 0.0001, Cohen’s d > 4.9). We observed a lower density of potential pentapeptide targets for T cell recognition in the spike protein from the human-adapted SARS-CoV-2 ancestor compared to 10 other SARS-CoV-2 proteins originating from the horseshoe bat-adapted ancestor. Our novel method for predicting T cell immunogenicity of SARS-CoV-2 peptides is four times more effective than previous approaches. We recommend utilizing our theory-based method where efficient empirically based algorithms are unavailable, such as in the development of certain veterinary vaccines, and combining it with empirical methods in other cases for optimal results.

Funder

Czech Science Foundation

Ministry of Health

Czech Republic—conceptual development of research organization

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3