Testing for protonitazene in human hair using LC–MS-MS

Author:

Kintz Pascal12ORCID,Ameline Alice1ORCID,Gheddar Laurie1,Pichini Simona3ORCID,Mazoyer Cédric4,Teston Katy4,Aknouche Frédéric4,Maruejouls Christophe4

Affiliation:

1. Laboratoire de toxicologie, Institut de médecine légale , Strasbourg 67000, France

2. Science and research, X-Pertise Consulting , Mittelhausbergen 67206, France

3. Toxicology, Istituto Superiore di Sanita , Roma 00161, Italy

4. Toxicology, Laboratoire Synlab Réunion , Saint-Paul 97411, France

Abstract

Abstract Protonitazene is a synthetic benzimidazole opioid of the nitazenes class, developed in the 1950s as an effective analgesic, but never released on the market due to severe side effects and possible dependence. Despite its increasing use as a new psychoactive substance starting in 2019, its detection in human hair of intoxicated and deceased consumers has never been reported. We present the development and validation of a specific procedure to identify protonitazene in hair by liquid chromatography with tandem mass spectrometry. Drugs were incubated overnight at 40°C in 1 mL borate buffer, pH 9.5 with 20 mg pulverized hair and 1 ng/mg fentanyl-d5 used as internal standard. Drugs were then extracted with a mixture of organic solvents. The chromatographic separation was performed using an HSS C18 column with a 15-min gradient elution. Linearity was verified from 1 to 100 pg/mg. The limit of detection was estimated at 0.1 pg/mg. No interference was noted from a large panel of natural and synthetic opioids, fentanyl derivatives, or other new synthetic opioids. Protonitazene was identified at 70 and >7600 pg/mg in the whole head hair specimens of two male subjects deceased from an acute drug overdose in jail. Protonitazene was also identified at 14 and 54 pg/mg in two living co-prisoners. As nitazenes represent a growing threat to public health in various parts of the world, this method was developed in response to the challenges posed by the identification of this class of substances.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3