Green Analytical Toxicology procedure for determination of ketamine, its metabolites and analogues in oral fluid samples using dispersive liquid–liquid microextraction (DLLME)

Author:

Oliveira Juliana Ribeiro Ibiapina Leitão12ORCID,Rodrigues Leonardo Costalonga12ORCID,Kahl Júlia Martinelli Magalhães23ORCID,Berlinck Débora Zorrón23ORCID,Costa Jose Luiz23ORCID

Affiliation:

1. School of Medical Sciences, University of Campinas , Campinas, SP 13083-887, Brazil

2. Campinas Poison Control Center, School of Medical Sciences, University of Campinas , Campinas, SP 13083-888, Brazil

3. Faculty of Pharmaceutical Sciences, University of Campinas , Campinas, SP 13083-871, Brazil

Abstract

Abstract New psychoactive substances (NPS) are often synthesized via small changes in the molecular structure, producing drugs whose effect and potency are not yet fully known. Ketamine is one of the oldest NPS, with therapeutic use in human and veterinary medicine authorized in several countries, being metabolized mainly into norketamine and 6-hydroxy-norketamine. Furthermore, two structural analogues of ketamine have recently been identified, deschloroketamine and 2-fluorodeschloroketamine, marketed as drugs of abuse. To comply with Green Analytical Toxicology (GAT) fundamentals, miniaturized techniques such as dispersive liquid–liquid microextraction (DLLME) were employed to determine toxicants in biological fluids. An analytical method for determining ketamine, its metabolites and its analogues in oral fluid was fully developed and validated by using DLLME and liquid chromatography–tandem mass spectrometry (LC-MS-MS). The extraction parameters were optimized by multivariate analysis, obtaining the best conditions with 200 μL of sample, 100 μL of methanol as dispersive solvent and 50 μL of chloroform as extractor solvent. Linearity was obtained from 10 to 1,000 ng/mL, with limit of detection (LOD) and lower limit of quantification (LLOQ) at 10 ng/mL. Imprecision (% relative standard deviation) and bias (%) were less than 8.2% and 9.5%, respectively. The matrix effect did not exceed 10.6%, and the recovery values varied from 24% to 42%. No matrix interference and good selectivity in the evaluation of 10 different sources of oral fluid and 42 drugs at 500 ng/mL, respectively, were observed. The method was applied in the analysis of 29 authentic oral fluid samples and had its green characteristic evaluated by three different tools: the Green Analytical Procedure Index (GAPI), the Analytical Eco-Scale and the Analytical GREEnness (AGREE) metrics.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3