The role of the World Guidelines for Falls Prevention and Management’s risk stratification algorithm in predicting falls: a retrospective analysis of the Osteoarthritis Initiative

Author:

Ragusa Francesco Saverio1,Di Bella Giovanna1,Dominguez Ligia J2,Veronese Nicola1,Smith Lee3,Barbagallo Mario1

Affiliation:

1. University Hospital Policlinic Paolo Giaccone Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro”, Geriatric Unit, , 90100 Palermo, Sicilia, Italy

2. “Kore” University of Enna Faculty of Medicine and Surgery, , 94100 Enna, Italy

3. Anglia Ruskin University Centre for Health Performance and Wellbeing, , Cambridge, UK

Abstract

Abstract Introduction Recurrent falls are observed frequently among older people, and they are responsible for significant morbidity and mortality. The aim of the present study was to verify sensitivity, specificity and accuracy of World Guidelines for Falls Prevention and Management (WGFPM) falls risk stratification algorithm using data from the Osteoarthritis Initiative (OAI). Methods Participants aged between 40 and 80 years were stratified as ‘low risk’, ‘intermediate risk’ or ‘high risk’ as per WGFPM stratification. Data from the OAI cohort study were used, a multi-centre, longitudinal, observational study focusing primarily on knee osteoarthritis. The assessment of the outcome was carried out at baseline and during the follow-up visit at 24 months. Data about sensitivity, specificity and accuracy were reported. Results Totally, 4796 participants were initially included. Participants were aged a mean of 61.4 years (SD = 9.1) and were predominantly women (58.0%). The population was divided into three groups: low risk (n = 3266; 82%), intermediate risk (n = 25; 0.6%) and high risk (n = 690; 17.3%). WGFPM algorithm applied to OAI, excluding the intermediate-risk group, produced a sensitivity score of 33.7% and specificity of 89.9% for predicting one or more falls, with an accuracy of 72.4%. Conclusion In our study, WGFPM risk assessment algorithm successfully distinguished older people at greater risk of falling using the opportunistic case finding method with a good specificity, but limited sensitivity, of WGFPM falls risk stratification algorithm.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3