Location, Location, Location: An MCMC Approach to Modeling the Spatial Context of War and Peace

Author:

Ward Michael D.,Gleditsch Kristian Skrede

Abstract

This article demonstrates how spatially dependent data with a categorical response variable can be addressed in a statistical model. We introduce the idea of an autologistic model where the response for one observation is dependent on the value of the response among adjacent observations. The autologistic model has likelihood function that is mathematically intractable, since the observations are conditionally dependent upon one another. We review alternative techniques for estimating this model, with special emphasis on recent advances using Markov chain Monte Carlo (MCMC) techniques. We evaluate a highly simplified autologistic model of conflict where the likelihood of war involvement for each nation is conditional on the war involvement of proximate states. We estimate this autologistic model for a single year (1988) via maximum pseudolikelihood and MCMC maximum likelihood methods. Our results indicate that the autologistic model fits the data much better than an unconditional model and that the MCMC estimates generally dominate the pseudolikelihood estimates. The autologistic model generates predicted probabilities greater than 0.5 and has relatively good predictive abilities in an out-of-sample forecast for the subsequent decade (1989 to 1998), correctly identifying not only ongoing conflicts, but also new ones.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Sociology and Political Science

Reference55 articles.

1. Armed Conflict, 1989-98

2. Efficiency of pseudolikelihood estimation for simple Gaussian fields

3. Cargo Cult Social Science and Eight Fallacies of Comparative Political Research;Ward;International Studies Notes,1988

4. Autologistic Model of Spatial Pattern of Phytophthora Epidemic in Bell Pepper: Effects of Soil Variables on Disease Presence

5. Our empirical model covers a single cross section only and does not address the temporal dynamics. As such, our lagged spatial realized covariates may reflect over-time dynamics.

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3