Deep learning automation of MEST-C classification in IgA nephropathy

Author:

Jaugey Adrien12,Maréchal Elise34,Tarris Georges45,Paindavoine Michel12,Martin Laurent45,Chabannes Melchior6,Funes de la Vega Mathilde5,Chaintreuil Mélanie34,Robier Coline34,Ducloux Didier467,Crépin Thomas67,Felix Sophie8,Jacq Amélie3,Calmo Doris6,Tinel Claire34,Zanetta Gilbert3,Rebibou Jean-Michel347,Legendre Mathieu347

Affiliation:

1. ESIREM School , Dijon , France

2. LEAD Laboratoire de l’étude de l'apprentissage et du Développement , Dijon , France

3. Department of Nephrology , CHU Dijon, Dijon , France

4. Université de Bourgogne Franche Comté , France

5. Department of Pathology , CHU Dijon, Dijon , France

6. Department of Nephrology , CHU Besançon, Besançon , France

7. UMR 1098, INCREASE , Besançon , France

8. Department of Pathology , CHU Besançon , Besançon , France

Abstract

ABSTRACT Background Although the MEST-C classification is among the best prognostic tools in immunoglobulin A nephropathy (IgAN), it has a wide interobserver variability between specialized pathologists and others. Therefore we trained and evaluated a tool using a neural network to automate the MEST-C grading. Methods Biopsies of patients with IgAN were divided into three independent groups: the Training cohort (n = 42) to train the network, the Test cohort (n = 66) to compare its pixel segmentation to that made by pathologists and the Application cohort (n = 88) to compare the MEST-C scores computed by the network or by pathologists. Results In the Test cohort, >73% of pixels were correctly identified by the network as M, E, S or C. In the Application cohort, the neural network area under the receiver operating characteristics curves were 0.88, 0.91, 0.88, 0.94, 0.96, 0.96 and 0.92 to predict M1, E1, S1, T1, T2, C1 and C2, respectively. The kappa coefficients between pathologists and the network assessments were substantial for E, S, T and C scores (kappa scores of 0.68, 0.79, 0.73 and 0.70, respectively) and moderate for M score (kappa score of 0.52). Network S and T scores were associated with the occurrence of the composite survival endpoint (death, dialysis, transplantation or doubling of serum creatinine) [hazard ratios 9.67 (P = .006) and 7.67 (P < .001), respectively]. Conclusions This work highlights the possibility of automated recognition and quantification of each element of the MEST-C classification using deep learning methods.

Funder

GIRCI

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3