Herbivores alleviate the negative effects of extreme drought on plant community by enhancing dominant species

Author:

Xu Chong12,Ke Yuguang2,Wu Honghui3,Smith Melinda D4ORCID,Lemoine Nathan P5,Zhang Weiguo1,Yu Qiang2ORCID

Affiliation:

1. State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China

2. National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

4. Department of Biology, Colorado State University, Fort Collins, CO 80523, USA

5. Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA

Abstract

Abstract Aims Both extreme drought and insect herbivores can suppress plant growth in grassland communities. However, most studies have examined extreme drought and insects in isolation, and there is reason to believe that insects might alter the ability of grasslands to withstand drought. Unfortunately, few studies have tested the interactive effects of extreme drought and insect herbivores in grassland communities. Methods Here, we tested the drought–herbivore interactions using a manipulative experiment that factorially crossed extreme drought with the exclusion of insect herbivores in a temperate semiarid grassland in Inner Mongolia. Important Findings Our results demonstrated that both extreme drought and insect herbivores separately decreased total plant cover. When combined, insect herbivores reduced the impact of drought on total cover by increasing the relative abundance of drought-resistant dominant species. Our results highlight that the negative effect of extreme drought on total plant cover could be alleviated by maintaining robust insect herbivore communities.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3