Histograms of Frequency-Intensity Distribution Deep Learning to Predict the Seizure Liability of Drugs in Electroencephalography

Author:

Matsuda Naoki1,Kinoshita Kenichi2,Okamura Ai2,Shirakawa Takafumi2,Suzuki Ikuro1

Affiliation:

1. Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Miyagi 982-8577, Japan

2. Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan

Abstract

Abstract Detection of seizures as well as that of seizure auras is effective in improving the predictive accuracy of seizure liability of drugs. Whereas electroencephalography has been known to be effective for the detection of seizure liability, no established methods are available for the detection of seizure auras. We developed a method for detecting seizure auras through machine learning using frequency-characteristic images of electroencephalograms. Histograms of frequency-intensity distribution prepared from electroencephalograms of rats analyzed during seizures induced with 4-aminopyridine (6 mg/kg), strychnine (3 mg/kg), and pilocarpine (400 mg/kg), were used to create an artificial intelligence (AI) system that learned the features of frequency-characteristic images during seizures. The AI system detected seizure states learned in advance with 100% accuracy induced even by convulsants acting through different mechanisms, and the risk of seizure before a seizure was detected in general observation. The developed AI system determined that the unlearned convulsant Tramadol (150 mg/kg) was the risk of seizure and the negative compounds aspirin and vehicle were negative. Moreover, the AI system detected seizure liability even in electroencephalography data associated with the use of 4-aminopyridine (3 mg/kg), strychnine (1 mg/kg), and pilocarpine (150 mg/kg), which did not induce seizures detectable in general observation. These results suggest that the AI system developed herein is an effective means for electroencephalographic detection of seizure auras, raising expectations for its practical use as a new analytical method that allows for the sensitive detection of seizure liability of drugs that has been overlooked previously in preclinical studies.

Funder

Astellas Pharma Inc

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3