Manganese relative oral bioavailability in electric arc furnace steel slag is influenced by high iron content and low bioaccessibility

Author:

Proctor Deborah M1,Vivanco Stephanie N1,Blanchette Alexander D2

Affiliation:

1. ToxStrategies, LLC , Mission Viejo, California 92691, USA

2. ToxStrategies, LLC , Asheville, North Carolina 28801, USA

Abstract

Abstract Electric arc furnace (EAF) slag is a rock-like aggregate produced with carbon steel and used for construction, including residential ground cover. It is enriched with manganese (Mn) and other metals, including iron (Fe), but because metals are bound in mineral matrices, in vitro bioaccessibility (BA) is limited. We conducted a relative bioavailability (RBA) study using F344 rats to assess Mn RBA from EAF slag ingestion, compared with Mn in diet. Mn and Fe were measured in liver, and Mn in lung and striatum, the target tissue of the brain. Mn levels in each tissue were fit by dose-to-tissue concentration (D-TC) curves. The D-TC relationship was the most highly significant for the linear model using liver Mn, and the RBA was 48%. The D-TC relationship in lung showed a positive slope for chow, but that for EAF slag was slightly negative, and the RBA was 14%. In comparison, the striatum D-TC remained relatively constant, supporting that homeostasis was maintained. Increased Fe was observed in the liver of EAF slag-dosed groups, suggesting that Mn absorption was inhibited by the high Fe content of slag. Lung and striatum D-TC curves demonstrated that systemic delivery of Mn from EAF slag ingestion is limited and support an RBA of 14% for risk assessment. Although Mn levels in slag are elevated compared with health-based screening guidelines, this study supports that incidental ingestion of Mn in EAF slag is unlikely to pose a neurotoxicity hazard due to homeostatic controls, low BA, and high Fe content.

Funder

National Slag Association

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3