In Utero and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Induces a Premature Development of the Mammary Glands

Author:

Gouesse Rita-Josiane1,Dianati Elham1,McDermott Alec1,Wade Michael G2ORCID,Hales Barbara3ORCID,Robaire Bernard34,Plante Isabelle1ORCID

Affiliation:

1. INRS—Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada

2. Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario K1A 0K9, Canada

3. Faculty of Medicine, Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada

4. Faculty of Medicine, Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec H4A 3J1, Canada

Abstract

Abstract In utero and prepubertal development of the mammary glands occurs minimally in a hormone independent manner until puberty where maturation of the hypothalamic-pituitary-gonadal axis drives an extensive remodeling. Nevertheless, because the immature glands contain functional hormone receptors, they are especially vulnerable to the effects of endocrine disruptors, such as brominated flame retardants (BFRs). BFRs are widespread chemicals added to household objects to reduce their flammability, and to which humans are ubiquitously exposed. We previously reported that in utero and lactational exposure to BFRs resulted in an impaired mammary gland development in peripubertal animals. Here, we assessed whether BFR-induced disruption of mammary gland development could manifest earlier in life. Dams were exposed prior to mating until pups’ weaning to a BFR mixture (0, 0.06, 20, or 60 mg/kg/day) formulated according to levels found in house dust. The mammary glands of female offspring were collected at weaning. Histo-morphological analyses showed that exposure to 0.06 mg/kg/day accelerates global epithelial development as demonstrated by a significant increase in total epithelial surface area, associated with a tendency to increase of the ductal area and thickness, and of lumen area. Significant increases of the Ki67 cell proliferation index and of the early apoptotic marker cleaved caspase-9 were also observed, as well as an upward trend in the number of thyroid hormone receptor α1 positive cells. These molecular, histologic, and morphometric changes are suggestive of accelerated pubertal development. Thus, our results suggest that exposure to an environmentally relevant mixture of BFRs induces precocious development of the mammary gland.

Funder

The Natural Sciences and Engineering Research Council of Canada

The Canadian Institutes of Health Research, Institute of Human Development, Child and Youth Health

Chemicals Management Research Initiative Fund of Health Canada

RJG

Fondation Armand-Frappier scholarships

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3