A mode of action-based probabilistic framework of dose-response assessment for nonmutagenic liver carcinogens: a case study of PCB-126

Author:

Zhou Yun1,Chen Qiran2,Klaunig James E1,Shao Kan1

Affiliation:

1. Department of Environmental and Occupational Health, School of Public Health—Bloomington, Indiana University , Bloomington, Indiana 47405, USA

2. Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, Florida 32610, USA

Abstract

Abstract A main function of dose-response assessment is to estimate a “safe” dose in the target population to support chemical risk assessment. Typically, a “safe” dose is developed differently for cancer and noncancer effects based on a 2-step procedure, ie, point of departure (POD) derivation and low-dose extrapolation. However, the current dose-response assessment framework is criticized for its dichotomized strategy without integrating the mode of action (MOA) information. The objective of this study was, based on our previous work, to develop a MOA-based probabilistic dose-response framework that quantitatively synthesizes a biological pathway in a dose-response modeling process to estimate the risk of chemicals that have carcinogenic potential. 3,3′,4,4′,5-Pentachlorobiphenyl (PCB-126) was exemplified to demonstrate our proposed approach. There were 4 major steps in the new modeling framework, including (1) key quantifiable events (KQEs) identification and extraction, (2) essential dose calculation, (3) MOA-based POD derivation, and (4) MOA-based probabilistic reference dose (RfD) estimation. Compared with reported PODs and traditional RfDs, the MOA-based estimates derived from our approach were comparable and plausible. One key feature of our approach was the use of overall MOA information to build the dose-response relationship on the entire dose continuum including the low-dose region. On the other hand, by adjusting uncertainty and variability in a probabilistic manner, the MOA-based probabilistic RfDs can provide useful insights of health protection for the specific proportion of population. Moreover, the proposed framework had important potential to be generalized to assess different types of chemicals other than nonmutagenic carcinogens, highlighting its utility to improve current chemical risk assessment.

Funder

National Institute of Environmental Health Sciences

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3