LncRNA MEG3 Involved in NiO NPs-Induced Pulmonary Fibrosis via Regulating TGF-β1-Mediated PI3K/AKT Pathway

Author:

Zhan Haibing1,Sun Xingchang2,Wang Xiaoxia1,Gao Qing1,Yang Mengmeng1,Liu Han1,Zheng Jinfa1,Gong Xuefeng1,Feng Sanwei2,Chang Xuhong1,Sun Yingbiao1ORCID

Affiliation:

1. Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China

2. Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou 730000, China

Abstract

Abstract Long noncoding RNA maternally expressed gene 3 (MEG3) involves in fibrotic diseases, but its role in nickel oxide nanoparticles (NiO NPs)-induced pulmonary fibrosis remains unclear. The present study aimed to explore the relationships among MEG3, transforming growth factor-β1 (TGF-β1) and phosphoinositide 3-kinase (PI3K)/AKT pathway in NiO NPs-induced pulmonary fibrosis. Wistar rats were intratracheally instilled with NiO NPs twice a week for 9 weeks, and human lung adenocarcinoma epithelial cells (A549 cells) were exposed to NiO NPs for 24 h. The pathological alterations and increased hydroxyproline indicated that NiO NPs caused pulmonary fibrosis in rats. The up-regulated type I collagen (Col-I) suggested that NiO NPs-induced collagen deposition in A549 cells. Meanwhile, NiO NPs could significantly down-regulate MEG3, up-regulate TGF-β1 and activate PI3K/AKT signaling pathway both in vivo and in vitro. However, we found that the PI3K/AKT pathway activated by NiO NPs could be suppressed by 10 μM TGF-β1 inhibitor (SB431542) in A549 cells. The protein markers (Col-I, Fibronectin, and alpha-smooth muscle actin) of collagen deposition up-regulated by NiO NPs were reduced by 10 μM PI3K inhibitor (LY294002). Furthermore, we further found that overexpressed MEG3 inhibited the expression of TGF-β1, resulting in the inactivation of PI3K/AKT pathway and the reduction of collagen formation. In summary, our results validated that MEG3 could arrest NiO NPs-induced pulmonary fibrosis via inhibiting TGF-β1-mediated PI3K/AKT pathway.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3