Trichloroethylene metabolite modulates DNA methylation-dependent gene expression in Th1-polarized CD4+ T cells from autoimmune-prone mice

Author:

Choudhury Samrat Roy12ORCID,Byrum Stephanie D23,Blossom Sarah J4ORCID

Affiliation:

1. Division of Hematology/Oncology, Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72202, USA

2. Arkansas Children’s Research Institute, Department of Pediatrics , Little Rock, Arkansas 72202, USA

3. Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, USA

4. Department of Pharmaceutical Sciences, University of New Mexico , Albuquerque, New Mexico 87131, USA

Abstract

Abstract Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant associated with CD4+ T-cell activation and autoimmune disease. Prior studies showed that exposure to TCE in the drinking water of autoimmune-prone mice expanded effector/memory CD4+ T cells with an interferon-γ (IFN-γ)-secreting Th1-like phenotype. However, very little is known how TCE exposure skews CD4+ T cells towards this pro-inflammatory Th1 subset. As observed previously, TCE exposure was associated with hypermethylation of regions of the genome related to transcriptional repression in purified effector/memory CD4 T cells. We hypothesized that TCE modulates transcriptional and/or epigenetic programming of CD4+ T cells as they differentiate from a naive to effector phenotype. In the current study, purified naive CD4 T cells from both male and female autoimmune-prone MRL/MpJ mice were activated ex vivo and polarized towards a Th1 subset for 4 days in the presence or absence of the oxidative metabolite of TCE, trichloroacetaldehyde hydrate (TCAH) in vitro. An RNA-seq assessment and reduced representation bisulfite sequencing for DNA methylation were conducted on Th1 cells or activated, non-polarized cells. The results demonstrated TCAH’s ability to regulate key genes involved in the immune response and autoimmunity, including Ifng, by altering the level of DNA methylation at the gene promoter. Intriguing sex differences were observed and for the most part, the effects were more robust in females compared to males. In conclusion, TCE via TCAH epigenetically regulates gene expression in CD4+ T cells. These results may have implications for mechanistic understanding or future therapeutics for autoimmunity.

Funder

National Institutes of Health

Institute of Environmental Health Sciences

University of New Mexico College of Pharmacy

Arkansas Children's Research Institute and the Center for Translational Pediatric Research

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3