Dapsone Hydroxylamine, an Active Metabolite of Dapsone, Can Promote the Procoagulant Activity of Red Blood Cells and Thrombosis

Author:

Bian Yiying12,Kim Keunyoung1,An Gwang-Jin1,Ngo Thien1,Bae Ok-Nam3,Lim Kyung-Min4,Chung Jin-Ho1ORCID

Affiliation:

1. College of Pharmacy, Seoul National University, Seoul 151-742, Korea

2. School of Public Health, China Medical University, Shenyang 110122, P.R. China

3. College of Pharmacy, Hanyang University, Ansan, Gyeonggido 426-791, Korea

4. College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea

Abstract

AbstractDapsone hydroxylamine (DDS-NHOH), N-hydroxylated metabolite of a sulfonamide antibiotic, dapsone, is responsible for various adverse effects of dapsone that include methemoglobinemia, hemolytic anemia, and thrombosis. However, the mechanism underlying DDS-NHOH-induced thrombosis remains unclear. Here, we demonstrated that DDS-NHOH, but not dapsone, could increase prothrombotic risks through inducing the procoagulant activity of red blood cells (RBCs). In freshly isolated human RBCs in vitro, sub-hemolytic concentrations of DDS-NHOH (10–50 μM) increased phosphatidylserine (PS) exposure and augmented the formation of PS-bearing microvesicles (MV). Reactive oxygen species (ROS) generation and the subsequent dysregulation of enzymes maintaining membrane phospholipid asymmetry were found to induce the procoagulant activity of DDS-NHOH. Dapsone hydroxylamine also accelerated thrombin generation and enhanced RBC self-aggregation and adherence of RBCs to endothelial cells in vitro. Most importantly, both the single dose of 50 or 100 mg/kg (i.p.) DDS-NHOH and repeated doses of 10 mg/kg per day (i.p.) for 4 days increased thrombus formation in rats (six rats per dose) in vivo, substantiating a potential prothrombotic risk of DDS-NHOH. Collectively, these results demonstrated the central role of RBC procoagulant activity induced by DDS-NHOH in the thrombotic risk of dapsone.

Funder

Korea Health Industry Development Institute

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3