Binge Ethanol Exposure in Mice Represses Expression of Genes Involved in Osteoblast Function and Induces Expression of Genes Involved in Osteoclast Differentiation Independently of Endogenous Catalase

Author:

Denys Alexandra1,Pedersen Kim B1,Watt James1ORCID,Norman Allison R1,Osborn Michelle L2,Chen Jin-Ran3,Maimone Cole1,Littleton Shana1,Vasiliou Vasilis4,Ronis Martin J J1

Affiliation:

1. Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA

2. Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA

3. Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s Nutrition Center, Little Rock, Arkansas 72202, USA

4. Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510, USA

Abstract

Abstract Excessive ethanol consumption is a risk factor for osteopenia. Since a previous study showed that transgenic female mice with overexpression of catalase are partially protected from ethanol-mediated trabecular bone loss, we investigated the role of endogenous catalase in skeletal ethanol toxicity comparing catalase knockout to wild-type mice. We hypothesized that catalase depletion would exacerbate ethanol effects. The mice were tested in a newly designed binge ethanol model, in which 12-week-old mice were exposed to 4 consecutive days of gavage with ethanol at 3, 3, 4, and 4.5 g ethanol/kg body weight. Binge ethanol decreased the concentration of serum osteocalcin, a marker of bone formation. The catalase genotype did not affect the osteocalcin levels. RNA sequencing of femoral shaft RNA from males was conducted. Ethanol exposure led to significant downregulation of genes expressed in cells of the osteoblastic lineage with a role in osteoblastic function and collagen synthesis, including the genes encoding major structural bone proteins. Binge ethanol further induced a smaller set of genes with a role in osteoclastic differentiation. Catalase depletion affected genes with expression in erythroblasts and erythrocytes. There was no clear interaction between binge ethanol and the catalase genotype. In an independent experiment, we confirmed that the binge ethanol effects on gene expression were reproducible and occurred throughout the skeleton in males. In conclusion, the binge ethanol exposure, independently of endogenous catalase, reduces expression of genes involved in osteoblastic function and induces expression of genes involved in osteoclast differentiation throughout the skeleton in males.

Funder

The National Institutes of Health grants National Institute on Alcohol Abuse and Alcoholism R37

National Institute on Alcohol Abuse and Alcoholism F32

National Institute of Alcohol Abuse and Alcoholism T32

LSUHSC—New Orleans

Biomedical Alcohol Research Training Program

Postbaccalaureate Research Education Program

National Institute of Alcohol Abuse and Alcoholism R24

Departmental Enhancement Program, from the Board of Regents Support Fund (BoRSF) funded by the Board of Regents of the State of Louisiana

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3