Intracellular Demethylation of Methylmercury to Inorganic Mercury by Organomercurial Lyase (MerB) Strengthens Cytotoxicity

Author:

Takanezawa Yasukazu1,Nakamura Ryosuke1,Matsuda Haruki1,Yagi Tomomi1,Egawa Zen1,Sone Yuka1,Uraguchi Shimpei1,Adachi Tatsumi2,Kiyono Masako1

Affiliation:

1. Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641

2. Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan

Abstract

Abstract Some methylmercury (MeHg) is converted to inorganic mercury (Hg2+) after incorporation into human and animal tissues, where it can remain for a long time. To determine the overall toxicity of MeHg in tissues, studies should evaluate low concentrations of Hg2+. Although demethylation is involved, the participating enzymes or underlying mechanisms are unknown; in addition, the low cell membrane permeability of Hg2+ makes these analyses challenging. We established model cell lines to assess toxicities of low concentrations of Hg2+ using bacterial organomercury lyase (MerB). We engineered MerB-expressing HEK293 and HeLa cell lines that catalyze MeHg demethylation. These cells were significantly more sensitive to MeHg exposure compared to the parental cells. MeHg treatment remarkably induced metallothioneins (MTs) and hemeoxygenase-1 (HMOX-1) mRNAs and modest expression of superoxide dismutase 1, whereas catalase and glutathione peroxidase 1 mRNAs were not up-regulated. merB knockdown using small interfering RNA supported the induction of MT and HMOX-1 mRNA by MerB enzymatic activity. Pretreatment with Trolox, a water-soluble vitamin E analog, did not inhibit MeHg-induced elevation of MT-Ix and HMOX-1 mRNAs in MerB-expressing cells, suggesting that Hg2+ works independently of reactive oxygen species generation. Similar results were obtained in cells expressing MerB, suggesting that high MTs and HMOX-1 induction and cytotoxicity are common cellular responses to low intracellular Hg2+ concentrations. This is the first study to establish cell lines that demethylate intracellular MeHg to Hg2+ using bacterial MerB for overcoming the low membrane permeability of Hg2+ and exploring the intracellular responses and toxicities of low Hg2+ concentrations.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3