Circ_0089282 inhibits carbon black nanoparticle-induced DNA damage by promoting DNA repair protein in the lung

Author:

Zhang Han12,Zhou Hanyu2,Zhang Nan2,Jia Yangyang2,Qiu Miaoyun2,Yao Shuwei2,Chen Xintong2,Qiu Lan2,Li Saifeng2,Jiang Yiguo12ORCID,Zhou Yun12

Affiliation:

1. State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou 510120, China

2. Institute for Chemical Carcinogenesis, Guangzhou Medical University , Guangzhou 511436, China

Abstract

AbstractInhalation of carbon black nanoparticles (CBNPs) can impair lung tissue and cause DNA damage, but the epigenetic mechanism responsible for these effects is still unclear. We explored the role of circular RNAs (circRNAs) in DNA damage induced by CBNPs in the lung. Human bronchial epithelial cell lines (16HBE and BEAS-2B) were treated with 0, 5, 10, 20, 40, or 80 μg/ml CBNPs for 24, 48, and 72 h, and BALB/c mice were exposed to 8 and 80 μg/d CBNPs for 14 days to establish in vitro and vivo models of CBNP exposure, respectively. We found that CBNPs caused DNA double-strand breaks in the lung. Using high-throughput sequencing and quantitative real-time PCR to identify CBNP-related circRNAs, we identified a novel circRNA (circ_0089282) that was overexpressed in the CBNP-exposed group. We used gain-/loss-of-function approaches, RNA pulldown assays, and silver staining to explore the regulatory function of circ_0089282 and its interactions with targeted proteins. We found that circ_0089282 interference could increase CBNP-induced DNA damage, whereas overexpression resulted in the opposite. Circ_0089282 could directly bind to the fused in sarcoma (FUS) protein and positively regulate downstream DNA repair protein DNA ligase 4 (LIG4) through FUS. This regulatory effect of circRNA on DNA damage via promotion of LIG4 illustrated the interactions between genetics and epigenetics in toxicology.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3