Persistent γ-H2AX Formation and Expression of Stem Cell Markers in N-Butyl-N-(4-Hydroxybutyl)Nitrosamine-Induced Bladder Carcinogenesis in Rats

Author:

Yamada Takanori12,Toyoda Takeshi1,Matsushita Kohei1ORCID,Akane Hirotoshi1,Morikawa Tomomi1,Cho Young-Man1,Ogawa Kumiko1

Affiliation:

1. Division of Pathology, National Institute of Health Sciences , Kawasaki-ku, Kawasaki 210-9501, Japan

2. Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology , Fuchu, Tokyo 183-8509, Japan

Abstract

Abstract We investigated γ-H2AX formation, a biomarker of DNA damage, and expression of stem cell markers (SCMs), including cytokeratin 14, aldehyde dehydrogenase 1A1 (ALDH1A1), and CD44, in the development of rat bladder tumors induced by short-term administration of N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN). Histopathological examination showed that diffuse simple hyperplasia of the bladder urothelium induced by BBN recovered to the normal-appearing urothelium after withdrawal, whereas focal proliferative lesions were newly developed and subsequently progressed to benign papilloma and carcinoma. Immunohistochemical analysis revealed that BBN-induced γ-H2AX formation and ALDH1A1 and CD44 expression persisted at higher levels in the normal-appearing urothelium than those in the control group for long periods after withdrawal. Since persistent chronic inflammation was observed even after withdrawal, targeted gene expression analysis of inflammation-related factors revealed 101 genes, including Stat3 and Myc, that showed persistent high expression. Pathway analysis suggested that Stat3 and/or Myc activation may be associated with SCM expression. We focused on hepatocyte growth factor (Hgf), one of the genes predicted in relation to Stat3/Myc, and confirmed that HGF-positive cells increased by BBN persisted in the normal-appearing urothelium after withdrawal and colocalized with γ-H2AX and SCMs. These results suggested that the long-term persistence of γ-H2AX formation and SCM expression, which occurred during the early stages of bladder tumorigenesis, is not a transient response to exposure and might contribute to bladder tumorigenesis. Although further studies are needed, BBN-induced rat bladder tumors may originate from focal hyperplasia arising from SCM-positive cells via activation of the STAT3/MYC pathway after DNA damage involving γ-H2AX formation.

Funder

Health and Labour Sciences Research Grant for the Research on Risk of Chemical Substances from the Ministry of Health, Labour and Welfare

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3