A Model Template Approach for Rapid Evaluation and Application of Physiologically Based Pharmacokinetic Models for Use in Human Health Risk Assessments: A Case Study on Per- and Polyfluoroalkyl Substances

Author:

Bernstein Amanda S12ORCID,Kapraun Dustin F2ORCID,Schlosser Paul M2ORCID

Affiliation:

1. Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, USA

2. Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, North Carolina 27711, USA

Abstract

Abstract Physiologically based pharmacokinetic (PBPK) models are commonly used in risk assessments to perform inter- and intraspecies extrapolations as well as to extrapolate between different dosing scenarios; however, they must first undergo quality assurance review, which can be a time-consuming process, especially when model code is not readily available. We developed and implemented (using R and MCSim) a PBPK model template capable of replicating published model results for several chemical-specific PBPK models. This model template allows for faster quality assurance review because the general model equations only need to be reviewed once, and application to a specific chemical then only requires reviewing input parameters. The model template can implement PBPK models with oral and intravenous exposure routes, varying numbers of tissue compartments, renal reabsorption, and multiple elimination pathways, including fecal, urinary, and biliary. Using the model template, we reproduced published model simulation results for perfluorohexanesulfonic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluorooctanoate, and perflouorooctane sulfonate. We also show that the template can be a useful tool for identifying potential model errors. Thus, the model template allows for faster evaluation and review of published PBPK models and provides a proof of concept for using this approach with broader classes of chemical-specific PBPK models.

Funder

Research Participation Program

Center for Public Health and Environmental Assessment

U.S. Environmental Protection Agency

U.S. Department of Energy and EPA

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3