Mechanistic Computational Model for Extrapolating In Vitro Thyroid Peroxidase (TPO) Inhibition Data to Predict Serum Thyroid Hormone Levels in Rats

Author:

Handa Sakshi1,Hassan Iman2ORCID,Gilbert Mary3,El-Masri Hisham1

Affiliation:

1. Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA

2. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA

3. Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA

Abstract

Abstract High-throughput in vitro assays are developed to screen chemicals for their potential to inhibit thyroid hormones (THs) synthesis. Some of these experiments, such as the thyroid peroxidase (TPO) inhibition assay, are based on thyroid microsomal extracts. However, the regulation of thyroid disruption chemicals is based on THs in vivo serum levels. This necessitates the estimation of thyroid disruption chemicals in vivo tissue levels in the thyroid where THs synthesis inhibition by TPO takes place. The in vivo tissue levels of chemicals are controlled by pharmacokinetic determinants such as absorption, distribution, metabolism, and excretion, and can be described quantitatively in physiologically based pharmacokinetic (PBPK) models. An integrative computational model including chemical-specific PBPK and TH kinetics models provides a mechanistic quantitative approach to translate thyroidal high-throughput in vitro assays to in vivo measures of circulating THs serum levels. This computational framework is developed to quantitatively establish the linkage between applied dose, chemical thyroid tissue levels, thyroid TPO inhibition potential, and in vivo TH serum levels. Once this link is established quantitatively, the overall model is used to calibrate the TH kinetics parameters using experimental data for THs levels in thyroid tissue and serum for the 2 drugs, propylthiouracil and methimazole. The calibrated quantitative framework is then evaluated against literature data for the environmental chemical ethylenethiourea. The linkage of PBPK and TH kinetics models illustrates a computational framework that can be extrapolated to humans to screen chemicals based on their exposure levels and potential to disrupt serum THs levels in vivo.

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3