Biochemical and Functional Analysis of Cyanobacterium Geitlerinema sp. LPS on Human Monocytes

Author:

Swanson-Mungerson Michelle1,Williams Philip G2,Gurr Joshua R2,Incrocci Ryan1,Subramaniam Vijay3,Radowska Kinga3,Hall Mary L4,Mayer Alejandro M S4

Affiliation:

1. Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515

2. Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822

3. Department of Biomedical Sciences

4. Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515

Abstract

Abstract Cyanobacterial blooms are an increasing source of environmental toxins that affect both human and animals. After ingestion of cyanobacteria, such as Geitlerinema sp., toxins and lipopolysaccharide (LPS) from this organism induce fever, gastrointestinal illness, and even death. However, little is known regarding the effects of cyanobacterial LPS on human monocytes after exposure to LPS upon ingestion. Based on our previous data using Geitlerinema sp. LPS (which was previously named Oscillatoria sp., a genus belonging to the same order as Geitlerinema), we hypothesized that Geitlerinema sp. LPS would activate human monocytes to proliferate, phagocytose particles, and produce cytokines that are critical for promoting proinflammatory responses in the gut. Our data demonstrate that Geitlerinema sp. LPS induced monocyte proliferation and TNF-α, IL-1, and IL-6 production at high concentrations. In contrast, Geitlerinema sp. LPS is equally capable of inducing monocyte-mediated phagocytosis of FITC-latex beads when compared with Escherichia coli LPS, which was used as a positive control for our experiments. In order to understand the mechanism responsible for the difference in efficacy between Geitlerinema sp. LPS and E. coli LPS, we performed biochemical analysis and identified that Geitlerinema sp. LPS was composed of significantly different sugars and fatty acid side chains in comparison to E. coli LPS. The lipid A portion of Geitlerinema sp. LPS contained longer fatty acid side chains, such as C15:0, C16:0, and C18:0, instead of C12:0 found in E. coli LPS which may explain the decreased efficacy and toxicity of Geitlerinema sp. LPS in comparison to E. coli LPS.

Funder

Midwestern University One Health Intramural Grant

Biomedical Sciences Program

National Institute on Aging

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3