Impact of Low-Dose Ionizing Radiation on the Composition of the Gut Microbiota of Mice

Author:

Liu Xiaodan1,Zhou Yao2,Wang Shaozheng1,Guan Hua1,Hu Sai1,Huang Ruixue2,Zhou Pingkun13

Affiliation:

1. Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China

2. Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, Changsha, Hunan Province 410078, P.R. China

3. School of Public Health, Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, P.R. China

Abstract

Abstract Although the importance of the gut microbiota in the maintenance of human health has been well established, little is known about the impact of low-dose ionizing radiation ([LDR]; exposure to a dose of less than 0.5 Gy of low linear energy transfer radiation such as γ- or X-rays) on the composition and functional role of the gut microbiota. The aim of the present study was to investigate and compare the composition of the gut microbiota in mice exposed to LDR. Male BALB/c mice were exposed to low-dose Co60 radiation. Fecal samples taken prior to and after irradiation were used for high-throughput sequencing of 16S rRNA gene sequence amplicons. We observed substantial changes in the composition of the gut microbiota, including alpha diversity and beta diversity, in mice exposed to LDR compared with the nonradiated control group. Moreover, at the genus level, the abundance of Clostridium, Helicobacter, and Oscilibacter increased, and those of Bacteroides and Barnesiella decreased, in a time-dependent manner in the radiated groups compared with the nonradiated control group. The functional metabolic pathway analysis indicated that Bacteroides spp. and members of the other genera that were found are predicted to play roles in bacterial toxin production, DNA repair, and Type II diabetes. Furthermore, these alterations in the gut microbiota were accompanied by changes in the abundance of multiple metabolites, which were predicted to be involved in multiple signaling pathways, including glucagon, central carbon metabolism, and type II diabetes. The possibility of microbiota-mediated pathophysiology resulting from LDR may be an as yet unrecognized hazard that merits further experimental examination. This study provides a conceptual and analytical foundation for further research into the chronic effects of LDR on human health, and points to potential novel targets for intervention to prevent the adverse effects of radiation.

Funder

National Key Basic Research

MOST

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3