Affiliation:
1. Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
Abstract
Abstract
Health-care workers have an increased incidence of allergic disease compared with the general public and are exposed to a variety of high-level disinfectants. Although exposure to these agents has been associated with allergic disease, findings between epidemiology and animal studies often conflict respecting immunological mechanisms. Therefore, we hypothesized that previous exposure to a representative IgE-mediated sensitizer (ortho-phthalaldehyde [OPA]) alters immune responses to a representative T-cell-mediated sensitizer (didecyldimethlyammonium chloride [DDAC]). Here, BALB/c mice were topically exposed to OPA (0.5%) for 3 days, rested, then topically exposed to DDAC (0.0625%, 0.125%, and 0.25%) for 14 days. Coexposure resulted in phenotypic changes in draining lymph node (dLN) cells, including a decreased frequency of CD8+ T cells and increased frequency and number of B cells compared with DDAC-only treated mice. The coexposed mice also had enhanced Th2 responses, including significant alterations in: dLN Il4 (increased), B-cell activation (increased), CD8+ T-cell activation (decreased), and local and systemic IgE production (increased). These changes were not observed if mice were exposed to DDAC prior to OPA. Exposure to OPA alone shows Th2 skewing, indicated by increased activation of skin type 2 innate lymphoid cells, increased frequency and activation of draining lymph node B cells, and increased levels of type 2 cytokines. These findings suggest that the OPA-induced immune environment may alter the response to DDAC, resulting in increased IgE-mediated immune responses. This data may partially explain the discordance between epidemiological and laboratory studies regarding disinfectants and provide insight into the potential immunological implications of mixed chemical exposures.
Funder
National Institute for Occupational Safety and Health
NIH
Publisher
Oxford University Press (OUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献