A Set of Six Gene Expression Biomarkers Identify Rat Liver Tumorigens in Short-term Assays

Author:

Corton J Christopher1ORCID,Hill Thomas12,Sutherland Jeffrey J3ORCID,Stevens James L34,Rooney John125

Affiliation:

1. Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina

2. Oak Ridge Institute for Science and Education (ORISE)

3. Indiana Biosciences Research Institute, Indianapolis, Indiana

4. Paradox Found LLC, Apex, North Carolina

5. Integrated Lab Services, Research Triangle Park, NC 27560

Abstract

Abstract Chemical-induced liver cancer occurs in rodents through well-characterized adverse outcome pathways. We hypothesized that measurement of the 6 most common molecular initiating events (MIEs) in liver cancer adverse outcome pathways in short-term assays using only gene expression will allow early identification of chemicals and their associated doses that are likely to be tumorigenic in the liver in 2-year bioassays. We tested this hypothesis using transcript data from a rat liver microarray compendium consisting of 2013 comparisons of 146 chemicals administered at doses with previously established effects on rat liver tumor induction. Five MIEs were measured using previously characterized gene expression biomarkers composed of gene sets predictive for genotoxicity and activation of 1 or more xenobiotic receptors (aryl hydrocarbon receptor, constitutive activated receptor, estrogen receptor, and peroxisome proliferator-activated receptor α). Because chronic injury can be important in tumorigenesis, we also developed a biomarker for cytotoxicity that had a 96% balanced accuracy. Characterization of the genes in each biomarker set using the unsupervised TXG-MAP network model demonstrated that the genes were associated with distinct functional coexpression modules. Using the Toxicological Priority Index to rank chemicals based on their ability to activate the MIEs showed that chemicals administered at tumorigenic doses clearly gave the highest ranked scores. Balanced accuracies using thresholds derived from either TG-GATES or DrugMatrix data sets to predict tumorigenicity in independent sets of chemicals were up to 93%. These results show that a MIE-directed approach using only gene expression biomarkers could be used in short-term assays to identify chemicals and their doses that cause tumors.

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3