Affiliation:
1. Department of Pharmaceutical Sciences, College of Pharmacy, Linus Pauling Institute, Oregon State University , Corvallis, Oregon 97331, USA
2. UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy , Chicago, Illinois 60612, USA
Abstract
Abstract
Glycyrrhiza uralensis Fisch. ex DC, one of the 3 pharmacopeial species of licorice and widely used in dietary supplements, can inhibit certain cytochrome P450 (CYP) enzymes. Thereby, G. uralensis preparations have the potential to cause pharmacokinetic drug interactions when consumed along with prescription medicines. One compound (1.34 mg dry weight) responsible for inhibiting CYP2B6, CYP2C8, and CYP2C9 was isolated using bioactivity-guided fractionation from 250 g dried roots, stolons, and rhizomes. The enzyme kinetics and mechanisms of inhibition were determined using human liver microsomes, recombinant enzymes, and UHPLC-MS/MS-based assays. Identified as licoisoflavone B, this compound displayed reversible inhibition of CYP2C8 with an IC50 value of 7.4 ± 1.1 µM and reversible inhibition of CYP2C9 with an IC50 value of 4.9 ± 0.4 µM. The enzyme kinetics indicated that the mechanism of inhibition was competitive for recombinant CYP2C8, with a Ki value of 7.0 ± 0.7 μM, and mixed-type inhibition for recombinant CYP2C9, with a Ki value of 1.2 ± 0.2 μM. Licoisoflavone B moderately inhibited CYP2B6 through a combination of irreversible and reversible mechanisms with an IC50 value of 16.0 ± 3.9 µM.
Funder
The Office of Dietary Supplements
National Center for Complementary and Integrative Health
National Institutes of Health
Publisher
Oxford University Press (OUP)