Early Gestational Exposure to Inhaled Ozone Impairs Maternal Uterine Artery and Cardiac Function

Author:

Garcia Marcus1,Salazar Raul1,Wilson Thomas1,Lucas Selita1,Herbert Guy1,Young Tamara1,Begay Jessica1,Denson Jesse L1,Zychowski Katherine1,Ashley Ryan2,Byrum Stephanie3,Mackintosh Samuel4,Bleske Barry E1,Ottens Andrew K5,Campen Matthew J1

Affiliation:

1. Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131

2. Department of Animal and Range Sciences, New Mexico State University, Las Cruces, New Mexico 88003

3. Arkansas Children's Research Institute, Little Rock, Arkansas 72202

4. Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205

5. Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298-0709

Abstract

Abstract Exposure to air pollutants such as ozone (O3) is associated with adverse pregnancy outcomes, including higher incidence of gestational hypertension, preeclampsia, and peripartum cardiomyopathy; however, the underlying mechanisms of this association remain unclear. We hypothesized that O3 exposures during early placental formation would lead to more adverse cardiovascular effects at term for exposed dams, as compared with late-term exposures. Pregnant Sprague Dawley rats were exposed (4 h) to either filtered air (FA) or O3 (0.3 or 1.0 ppm) at either gestational day (GD)10 or GD20, with longitudinal functional assessments and molecular endpoints conducted at term. Exposure at GD10 led to placental transcriptional changes at term that were consistent with markers in human preeclampsia, including reduced mmp10 and increased cd36, fzd1, and col1a1. O3 exposure, at both early and late gestation, induced a significant increase in maternal circulating soluble FMS-like tyrosine kinase-1 (sFlt-1), a known driver of preeclampsia. Otherwise, exposure to 0.3 ppm O3 at GD10 led to several late-stage cardiovascular outcomes in dams that were not evident in GD20-exposed dams, including elevated uterine artery resistance index and reduced cardiac output and stroke volume. GD10 O3 exposure proteomic profile in maternal hearts characterized by a reduction in proteins with essential roles in metabolism and mitochondrial function, whereas phosphoproteomic changes were consistent with pathways involved in cardiomyopathic responses. Thus, the developing placenta is an indirect target of inhaled O3 and systemic maternal cardiovascular abnormalities may be induced by O3 exposure at a specific window of gestation.

Funder

NIH

National Institute of Environmental Health Sciences

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3