LncRNA HOTAIRM1 Involved in Nano NiO-Induced Pulmonary Fibrosis via Regulating PRKCB DNA Methylation-Mediated JNK/c-Jun Pathway

Author:

Zheng Jinfa1,Wang Jinyu2,Qin Xin1,Li Kun1,Gao Qing1,Yang Mengmeng1,Liu Han1,Li Sheng3,Chang Xuhong1,Sun Yingbiao1ORCID

Affiliation:

1. Department of Toxicology, School of Public Health, Lanzhou University , Lanzhou 730000, China

2. Institute of Anthropotomy and Histoembryology, School of Basic Medical Sciences, Lanzhou University , Lanzhou 730000, China

3. Department of Public Health, The First People's Hospital of Lanzhou City , Lanzhou 730050, China

Abstract

Abstract Nickel oxide nanoparticles (Nano NiO) lead to pulmonary fibrosis, and the mechanisms are associated with epigenetics. This study aimed to clarify the regulatory relationship among long noncoding RNA HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1), DNA methylation and expression of protein kinase C beta (PRKCB), and JNK/c-Jun pathway in Nano NiO-induced pulmonary fibrosis. Therefore, we constructed the rat pulmonary fibrosis model by intratracheal instillation of Nano NiO twice a week for 9 weeks and established the collagen deposition model by treating BEAS-2B cells with Nano NiO for 24 h. Here, the DNA methylation pattern was analyzed by whole-genome bisulfite sequencing in rat fibrotic lung tissues. Then, we integrated mRNA transcriptome data and found 93 DNA methylation genes with transcriptional significance. Meanwhile, the data showed that Nano NiO caused the down-regulation of lncRNA HOTAIRM1, the hypomethylation, and up-regulation of PRKCB2, JNK/c-Jun pathway activation, and collagen deposition (the up-regulated Col-I and α-SMA) both in vivo and in vitro. DNMTs inhibitor 5-AZDC attenuated Nano NiO-induced PRKCB2 expression, JNK/c-Jun pathway activation, and collagen deposition, but overexpression of PRKCB2 aggravated the changes mentioned indicators in Nano NiO-induced BEAS-2B cells. Furthermore, JNK/c-Jun pathway inhibitor (SP600125) alleviated Nano NiO-induced excessive collagen formation. Additionally, overexpression of HOTAIRM1 restrained the PRKCB hypomethylation, the activation of JNK/c-Jun pathway, and collagen formation induced by Nano NiO in BEAS-2B cells. In conclusion, these findings demonstrated that HOTAIRM1 could arrest Nano NiO-induced pulmonary fibrosis by suppressing the PRKCB DNA methylation-mediated JNK/c-Jun pathway.

Funder

The Key R&D Program of Gansu Provincial Science and Technology plan Project

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, China

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3