Transient Receptor Potential Ion Channels Mediate Adherens Junctions Dysfunction in a Toluene Diisocyanate-Induced Murine Asthma Model

Author:

Yao Lihong1,Chen Shuyu2,Tang Haixiong3,Huang Peikai4,Wei Shushan4,Liang Zhenyu1,Chen Xin5,Wang Hongyu6,Tao Ailin2,Chen Rongchang1,Zhang Qingling4

Affiliation:

1. State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University

2. Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China

3. Department of Respiratory Medicine, Minzu Hospital of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning 530001, China

4. State Key Laboratory of Respiratory Diseases, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China

5. Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China

6. Division of Respirology, Department of Medicine, McMaster University, Firestone Institute for Respiratory Health (FIRH), The Research Institution of St. Joe's Hamilton (RISH), St. Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada

Abstract

Abstract Disruption of epithelial cell-cell junctions is essential for the initiation and perpetuation of airway inflammation in asthma. We’ve previously reported compromised epithelial barrier integrity in a toluene diisocyanate (TDI)-induced occupational asthma model. This study is aimed to explore the role of transient receptor potential vanilloid 4 (TRPV4) and transient receptor potential ankyrin 1 (TRPA1) in the dysfunction of adherens junctions in TDI-induced asthma. Mice were sensitized and challenged with TDI for a chemical-induced asthma model. Selective blockers of TRPV4 glycogen synthase kinase (GSK)2193874, 5 and 10 mg/kg) and TRPA1 (HC030031, 10 and 20 mg/kg) were intraperitoneally given to the mice. Immunohistochemistry revealed different expression pattern of TRPV4 and TRPA1 in lung. TDI exposure increased TRPV4 expression in the airway, which can be suppressed by GSK2193874, while treatment with neither TDI alone nor TDI together with HC030031 led to changes of TRPA1 expression in the lung. Blocking either TRPV4 or TRPA1 blunted TDI-induced airway hyperreactivity, airway neutrophilia and eosinophilia, as well as Th2 responses in a dose-dependent manner. At the same time, membrane levels of E-cadherin and β-catenin were significantly decreased after TDI inhalation, which were inhibited by GSK2193874 or HC030031. Moreover, GSK2193874 and HC030031 also suppressed serine phosphorylation of glycogen synthase kinase 3β, tyrosine phosphorylation of β-catenin, as well as activation and nuclear transport of β-catenin in mice sensitized and challenged with TDI. Our study suggested that both TRPV4 and TRPA1 contribute critically to E-cadherin and β-catenin dysfunction in TDI-induced asthma, proposing novel therapeutic targets for asthma.

Funder

National Postdoctoral Program for Innovative Talents

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Guangdong Province

Young Scientist Fundation of Guangxi Medical University

Precision Medicine Research of The National Key Research and Development Plan of China

Scientific and Technological Project of Guangzhou

National Key R&D Program of China

Guangzhou Healthcare Collaborative Innovation Major Project

State Key Laboratory of Respiratory Disease Independent Project

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Reference40 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3