2,3,7,8-Tetrachlorodibenzo-p-dioxin induces liver lipid metabolism disorder via the ROS/AMPK/CD36 signaling pathway

Author:

Cong Yewen1,Hong Yujing12,Wang Dandan13,Cheng Pei14,Wang Zhisheng1,Xing Changming1,Sun Wenxing1,Xu Guangfei1

Affiliation:

1. Department of Nutrition and Food Hygiene, School of Public Health, Nantong University , Nantong, Jiangsu 226001, P.R. China

2. Department of Clinical Nutrition, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University , Nantong, Jiangsu 226006, P.R. China

3. Haian Center for Disease Control and Prevention , Haian, Jiangsu 226600, P.R. China

4. Department of Clinical Nutrition, Xuzhou Children’s Hospital , Xuzhou, Jiangsu 221000, P. R. China

Abstract

Abstract2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is widely considered as the most toxic and common carcinogen in the world. Exposure to TCDD causes liver lipid metabolism disorder and steatosis. However, the molecular mechanism of TCDD-induced liver lipid accumulation is not completely clear. Here, we found that a 5 μg/kg TCDD exposure for 3 weeks induced hepatocyte lipid deposition, increased CD36 expression, and promoted AMP-activated protein kinase (AMPK) ɑ phosphorylation in the liver of C57BL/6J mice. Furthermore, sulfo-N-succinimidyl oleate, a CD36 inhibiter, blunted TCDD-induced lipid deposition in Huh7 cells, confirming the critical role of CD36 in TCDD-induced hepatic steatosis. In terms of molecular mechanisms, we found that TCDD exposure increased reactive oxygen species (ROS) levels in Huh7 cells, which activated AMPK. Moreover, the activated AMPK upregulated CD36 expression. Therefore, we can see that the increase in CD36 expression induced by TCDD was regulated by ROS/AMPK/CD36 signaling pathway. Our results help to clarify the molecular mechanism of TCDD-induced hepatic steatosis.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3