Topical Application of the Antimicrobial Agent Triclosan Induces NLRP3 Inflammasome Activation and Mitochondrial Dysfunction

Author:

Weatherly Lisa M1,Shane Hillary L1,Friend Sherri A2,Lukomska Ewa1,Baur Rachel1,Anderson Stacey E1

Affiliation:

1. Allergy and Clinical Immunology Branch

2. Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505

Abstract

Abstract5-Chloro-2-(2,4-dichlorophenoxy)phenol (triclosan) is an antimicrobial chemical widely used in consumer household and clinical healthcare products. Human and animal studies have associated triclosan exposure with allergic disease. Mechanistic studies have identified triclosan as a mitochondrial uncoupler; recent studies suggest that mitochondria play an important role in immune cell function and are involved in activation of the NLRP3 inflammasome. In this study, early immunological effects were evaluated via NLRP3 activation following dermal triclosan application in a BALB/c murine model. These investigations revealed rapid caspase-1 activation and mature IL-1β secretion in the skin and draining lymph nodes (dLNs) after 1.5% and 3% triclosan exposure. Correspondingly, pro-Il-1b and S100a8 gene expression increased along with extracellular ATP in the skin. Peak gene expression of chemokines associated with caspase-1 activation occurred after 2 days of exposure in both skin tissue and dLNs. Phenotypic analysis showed an increase in neutrophils and macrophages in the dLN and myeloid and inflammatory monocytes in the skin tissue. Triclosan also caused mitochondrial dysfunction shown through effects on mitochondrial reactive oxygen species, mass, mitochondrial membrane potential, and mitochondrial morphology. These results indicate that following triclosan exposure, activation of the NLRP3 inflammasome occurs in both the skin tissue and dLNs, providing a possible mechanism for triclosan’s effects on allergic disease and further support a connection between mitochondrial involvements in immunological responses.

Funder

Health Effects Laboratory Division of the National Institute for Occupational Safety and Health

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3