A Survey of Systematic Evidence Mapping Practice and the Case for Knowledge Graphs in Environmental Health and Toxicology

Author:

Wolffe Taylor A M12,Vidler John3,Halsall Crispin1,Hunt Neil2,Whaley Paul14

Affiliation:

1. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

2. Yordas Group, Lancaster University, Lancaster LA1 4YQ, UK

3. School of Computing and Communications, Lancaster University, Lancaster LA1 4WA, UK

4. Evidence-Based Toxicology Collaboration, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205

Abstract

Abstract Systematic evidence mapping offers a robust and transparent methodology for facilitating evidence-based approaches to decision-making in chemicals policy and wider environmental health (EH). Interest in the methodology is growing; however, its application in EH is still novel. To facilitate the production of effective systematic evidence maps for EH use cases, we survey the successful application of evidence mapping in other fields where the methodology is more established. Focusing on issues of “data storage technology,” “data integrity,” “data accessibility,” and “transparency,” we characterize current evidence mapping practice and critically review its potential value for EH contexts. We note that rigid, flat data tables and schema-first approaches dominate current mapping methods and highlight how this practice is ill-suited to the highly connected, heterogeneous, and complex nature of EH data. We propose this challenge is overcome by storing and structuring data as “knowledge graphs.” Knowledge graphs offer a flexible, schemaless, and scalable model for systematically mapping the EH literature. Associated technologies, such as ontologies, are well-suited to the long-term goals of systematic mapping methodology in promoting resource-efficient access to the wider EH evidence base. Several graph storage implementations are readily available, with a variety of proven use cases in other fields. Thus, developing and adapting systematic evidence mapping for EH should utilize these graph-based resources to ensure the production of scalable, interoperable, and robust maps to aid decision-making processes in chemicals policy and wider EH.

Funder

Centre for Global Eco-innovation

European Regional Development

Evidence-Based Toxicology Collaboration

Johns Hopkins Bloomberg School of Public Health

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3