Widespread Epigenetic Changes to the Enhancer Landscape of Mouse Liver Induced by a Specific Xenobiotic Agonist Ligand of the Nuclear Receptor CAR

Author:

Rampersaud Andy1ORCID,Lodato Nicholas J1,Shin Aram1,Waxman David J1ORCID

Affiliation:

1. Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215

Abstract

AbstractConstitutive androstane receptor (CAR) (Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid, and lipid metabolism and dysregulates genes linked to hepatocellular carcinogenesis, but its impact on the liver epigenome is poorly understood. TCPOBOP (1, 4-bis-[2-(3, 5-dichloropyridyloxy)]benzene), a halogenated xenochemical and highly specific CAR agonist ligand, induces localized chromatin opening or closing at several thousand mouse liver genomic regions, discovered as differential DNase-hypersensitive sites (ΔDHS). Active enhancer and promoter histone marks induced by TCPOBOP were enriched at opening DHS and TCPOBOP-inducible genes. Enrichment of CAR binding and CAR motifs was seen at opening DHS and their inducible drug/lipid metabolism gene targets, and at many constitutively open DHS located nearby. TCPOBOP-responsive cell cycle and DNA replication genes codependent on MET/EGFR signaling for induction were also enriched for CAR binding. A subset of opening DHS and many closing DHS mapping to TCPOBOP-responsive target genes did not bind CAR, indicating an indirect mechanism for their changes in chromatin accessibility. TCPOBOP-responsive DHS were also enriched for induced binding of RXRA, CEBPA, and CEBPB, and for motifs for liver-enriched factors that may contribute to liver-specific transcriptional responses to TCPOBOP exposure. These studies elucidate the enhancer landscape of TCPOBOP-exposed liver and the widespread epigenetic changes that are induced by both direct and indirect mechanisms linked to CAR activation. The global maps of thousands of environmental chemical-induced epigenetic changes described here constitute a rich resource for further research on xenochemical effects on liver chromatin states and the epigenome.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3