Prenatal Exposure to Bisphenol A, E, and S Induces Transgenerational Effects on Male Reproductive Functions in Mice

Author:

Shi Mingxin1,Whorton Allison E1,Sekulovski Nikola1,MacLean James A1,Hayashi Kanako1ORCID

Affiliation:

1. Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901

Abstract

Abstract This study was performed to examine the transgenerational effects of bisphenol (BP) A analogs, BPE, and BPS on male reproductive functions using mice as a model. CD-1 mice (F0) were orally exposed to control treatment (corn oil), BPA, BPE, or BPS (0.5 or 50 µg/kg/day) from gestational day 7 (the presence of vaginal plug = 1) to birth. Mice from F1 and F2 offspring were used to generate F3 males. Prenatal exposure to BPA, BPE, and BPS decreased sperm counts and/or motility and disrupted the progression of germ cell development as morphometric analyses exhibited an abnormal distribution of the stages of spermatogenesis in F3 males. Dysregulated serum levels of estradiol-17β and testosterone, as well as expression of steroidogenic enzymes in F3 adult testis were also observed. In the neonatal testis, although apoptosis and DNA damage were not affected, mRNA levels of DNA methyltransferases, histone methyltransferases, and their associated factors were increased by BP exposure. Furthermore, BP exposure induced immunoreactive expression of DNMT3A in Sertoli cells, strengthened DNMT3B, and weakened H3K9me2 and H3K9me3 in germ cells of the neonatal testis, whereas DNMT1, H3K4me3, and H3K27ac were not affected. In adult testis, stage-specific DNMT3B was altered by BP exposure, although DNMT3A, H3K9me2, and H3K9me3 expression remained stable. These results suggest that prenatal exposure to BPA, BPE, and BPS induces transgenerational effects on male reproductive functions probably due to altered epigenetic modification following disruption of DNMTs and histone marks in the neonatal and/or adult testis.

Funder

SIU-SOM Research Seed

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3