In vitro modeling of the post-ingestion bioaccessibility of per- and polyfluoroalkyl substances sorbed to soil and house dust

Author:

Parker Bethany A1ORCID,Valentini Evelyn2,Graham Stephen E3,Starr James M2ORCID

Affiliation:

1. Office of Research and Development, Oak Ridge Institute for Science and Education Fellow at the United States Environmental Protection Agency , Research Triangle Park, North Carolina 27711, USA

2. Office of Research and Development, United States Environmental Protection Agency , Research Triangle Park, North Carolina 27711, USA

3. Office of Pesticide Programs, United States Environmental Protection Agency , Research Triangle Park, North Carolina 27711, USA

Abstract

Abstract Per- and polyfluoroalkyl substances (PFAS) are regularly found in soils and dusts, both of which can be consumed by children at relatively high amounts. However, there is little data available to model the bioaccessibility of PFAS in soils and dusts when consumed or to describe how the physiochemical properties of PFAS and soils/dusts might affect bioaccessibility of these chemicals. Because bioaccessibility is an important consideration in estimating absorbed dose for exposure and risk assessments, in the current study, in vitro assays were used to determine bioaccessibility of 14 PFAS in 33 sets of soils and dusts. Bioaccessibility assays were conducted with and without a sink, which was used to account for the removal of PFAS due to their movement across the human intestine. Multiple linear regression with backward elimination showed that a segmented model using PFAS chain length, number of branches, and percent total organic carbon explained 78.0%–88.9% of the variability in PFAS bioaccessibility. In general, PFAS had significantly greater bioaccessibility in soils relative to dusts and the addition of a sink increased bioaccessibility in the test system by as much as 10.8% for soils and 20.3% for dusts. The results from this study indicate that PFAS bioaccessibility in soils and dusts can be predicted using a limited set of physical chemical characteristics and could be used to inform risk assessment models.

Funder

The United States Environmental Protection Agency, through its Office of Research and Development

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3