Affiliation:
1. Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
2. Interdisciplinary Toxicology Program, The University of Georgia, Athens, Georgia 30602, USA
3. Department of Environmental Health Science, College of Public Health, The University of Georgia, Athens, Georgia 30602, USA
Abstract
Abstract
Aflatoxin B1 (AFB1) induced intestinal epithelial damage in rodent models, which indicates that long-term exposure to AFB1 may cause chronic gut disorders. In this study, we tested the hypothesis that AFB1-induced adverse effects on gut is mediated by gut-microbiota, which is partially reflected by the changes of fecal microbiome and metabolome. F344 rats were orally exposed to AFB1 of 0, 5, 25, and 75 µg kg−1 body weight for 4 weeks and fecal samples were collected. An ion-fragmentation-spectrum-based metabolomics approach was developed to investigate the fecal microbiota-associated metabolic changes in fecal samples. We found that AFB1 inhibited the hepatic and intestinal metabolism of bile constituents. As compared with the controls, bile acid synthesis-associated cholesterols in rats treated with 25 µg kg−1 (the middle-dose group) were significantly decreased in the fecal samples, for example, lathosterol (45% reduction), cholesterol ester (21% reduction), chenodeoxycholic acid (20% reduction), dihydroxycholesterol (55% reduction), hydroxycholesterol (20% reduction), and 5-cholestene (29% reduction). Although disease-associated lipids were not detectable in the feces of the control group, they were found in AFB1-treated groups, including diglyceride, monoacylglyceride, 19,20-dihydroxy-docosapentaenoic acid, and phosphatidylethanolamine. Metabolisms of carbohydrates and production of short-chain fatty acids were remarkedly decreased in all treated groups. Moreover, an inflammatory-bowel-disease (IBD)-associated taxonomic structure of fecal microbiota was observed as ∼25% Lachnospiraceae, ∼25% Ruminococcaceae, and <1% Lactobacillales, which was similar to the composition pattern found in IBD patients. These results suggest that AFB1-induced disruption on gut-microbiota, partially reflected by fecal microbiome and metabolome, may play important roles in the pathogenesis of chronic gut disorders.
Funder
United States Agency for International Development via Peanut Collaborative Research Support Program
Center for Mycotoxin Research
College of Public Health, the University of Georgia
Publisher
Oxford University Press (OUP)