Effects of Bisphenols A, AF, and S on Endochondral Ossification and the Transcriptome of Murine Limb Buds

Author:

Iskandarani Lama1,McHattie Tessa1,Robaire Bernard12ORCID,Hales Barbara F1ORCID

Affiliation:

1. Department of Pharmacology & Therapeutics

2. Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec H3G 1Y6, Canada

Abstract

Abstract Bisphenols are a family of chemicals commonly used to produce polycarbonate plastics and epoxy resins. Exposure to bisphenol A (BPA) is associated with a variety of adverse effects; thus, many alternatives to BPA, such as bisphenol AF (BPAF) and bisphenol S (BPS), are now emerging in consumer products. We have determined the effects of 3 bisphenols on endochondral ossification and the transcriptome in a murine limb bud culture system. Embryonic forelimbs were cultured in the presence of vehicle, BPA, BPAF, or BPS. BPA (≥10 μM), BPAF (≥1 μM), and BPS (≥50 μM) reduced the differentiation of hypertrophic chondrocytes and osteoblasts. Chondrogenesis was suppressed by exposure to ≥50 μM BPA, ≥5 μM BPAF, or 100 μM BPS and osteogenesis was almost completely arrested at 100 μM BPA or 10 μM BPAF. RNA sequencing analyses revealed that the total number of differentially expressed genes increased with time and the concentration tested. BPA exposure differentially regulated 635 genes, BPAF affected 554 genes, whereas BPS affected 95 genes. Although the genes that were differentially expressed overlapped extensively, each bisphenol also induced chemical-specific alterations in gene expression. BPA- and BPAF-treated limbs exhibited a downregulation of Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI) signaling genes. Exposure to BPA and BPS resulted in the upregulation of key genes involved in cholesterol biosynthesis, whereas exposure to BPAF induced an upregulation of genes involved in bone formation and in the p53 signaling pathway. These data suggest that BPAF may be more detrimental to endochondral ossification than BPA, whereas BPS is of comparable toxicity to BPA.

Funder

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3