Critical Evaluation of Low-Molecular Weight Respiratory Sensitizers and Their Protein Reactivity Potential Toward Lysine Residues

Author:

Krutz Nora L1,Kimber Ian2,Ryan Cindy A3,Kern Petra S1,Gerberick G Frank4

Affiliation:

1. NV Procter & Gamble Services Company SA, Global Product Stewardship, Strombeek-Bever 1853, Belgium

2. University of Manchester, Faculty of Biology, Medicine and Health, Manchester M13 9PL, UK

3. The Procter & Gamble Company, Global Product Stewardship, Mason, Ohio 45040, USA

4. GF3 Consultancy LLC, West Chester, Ohio 45069, USA

Abstract

Abstract Interest in the development of methods to evaluate the respiratory sensitization potential of low-molecular weight chemicals continues, but no method has yet been generally accepted or validated. A lack of chemical reference standards, together with uncertainty regarding relevant immunological mechanisms, has hampered method development. The first key event in the development of either skin or respiratory sensitization is the formation of stable adducts of the chemical with host proteins. This event is measured in the Direct Peptide Reactivity Assay using cysteine- and lysine-containing model peptides. It is hypothesized that protein reactivity and subsequent adduct formation may represent the earliest point of divergence in the pathways leading to either skin or respiratory sensitization. Direct Peptide Reactivity Assay data for 200 chemicals were compiled and grouped into respiratory, skin and nonsensitizers. Chemicals grouping was based on extensive literature research and expert judgment. To evaluate if chemical groups represent different peptide reactivity profiles, peptide reactivity data were clustered and compared with information on protein binding mechanisms and chemical categories available via the Organization for Economic Co-operation and Development. Toolbox. Respiratory sensitizers (n = 15) showed a significant (3-fold) higher lysine reactivity than skin sensitizers (n = 129). However, this difference was driven largely by the high representation of acid anhydrides among the respiratory sensitizers that showed clear lysine selectivity. Collectively, these data suggest that preferential reactivity for either cysteine or lysine is associated primarily with chemical structure, and that lysine preference is not a unifying characteristic of chemical respiratory allergens.

Funder

The Federal Ministry of Education and Research

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3