Affiliation:
1. Litron Laboratories, Rochester, New York, 14623
Abstract
Abstract
A tiered bioassay and data analysis scheme is described for elucidating the most common molecular targets responsible for chemical-induced in vitro aneugenicity: tubulin destabilization, tubulin stabilization, and inhibition of mitotic kinase(s). To evaluate this strategy, TK6 cells were first exposed to each of 27 presumed aneugens over a range of concentrations. After 4 and 24 h of treatment, γH2AX, p53, phospho-histone H3 (p-H3), and polyploidization biomarkers were evaluated using the MultiFlow DNA Damage Assay Kit. The assay identified 27 of 27 chemicals as genotoxic, with 25 exhibiting aneugenic signatures, 1 aneugenic and clastogenic, and 1 clastogenic. Subsequently, a newly described follow-up assay was employed to investigate the aneugenic agents’ molecular targets. For these experiments, TK6 cells were exposed to each of 26 chemicals in the presence of 488 Taxol. After 4 h, cells were lysed and the liberated nuclei and mitotic chromosomes were stained with a nucleic acid dye and labeled with fluorescent antibodies against p-H3 and Ki-67. Flow cytometric analyses revealed that alterations to 488 Taxol-associated fluorescence were only observed with tubulin binders—increases in the case of tubulin stabilizers, decreases with destabilizers. Mitotic kinase inhibitors with known Aurora kinase B inhibiting activity were the only aneugens that dramatically decreased the ratio of p-H3-positive to Ki-67-positive nuclei. Unsupervised hierarchical clustering based on 488 Taxol fluorescence and p-H3: Ki-67 ratios clearly distinguished compounds with these disparate molecular mechanisms. Furthermore, a classification algorithm based on an artificial neural network was found to effectively predict molecular target, as leave-one-out cross-validation resulted in 25/26 agreement with a priori expectations. These results are encouraging, as they suggest that an adequate number of training set chemicals, in conjunction with a machine learning algorithm based on 488 Taxol, p-H3, and Ki-67 responses, can reliably elucidate the most commonly encountered aneugenic molecular targets.
Funder
National Institute of Health
National Institute of Environmental Health Sciences
Publisher
Oxford University Press (OUP)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献